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Abstract.
Black hole binaries are variable in timescales of range from months to milli-seconds. The origin of this variability is still

not clear, it could be due to the variation of external parameters, like mass accretion rate, instabilities in the inner regions of
the accretion flow etc. Important constraints on these possibilities can be obtained from the study of the non-linear behavior
of fluctuations. We present a modified non-linear time series analysis technique which optimizes the use of the available data
and computes the correlation dimension in a non-subjective manner. We apply this technique to the X-ray light-curve of the
black hole system, GRS 1915+105, to show conclusively that at least for four of its twelve temporal classes, the underlying
mechanism is a low order chaotic one.

1. INTRODUCTION

One of the most interesting black hole candidates ob-
served so far is GRS 1915+105. Like other black
hole sources, it shows the X-ray variability in a wide
range of timescale varies from months to milli-seconds,
which certainly indicates that the system is highly non-
linear (that is even true for other black holes). How-
ever, the most exciting thing behind this micro quasar
GRS 1915+105 is that, according to the temporal vari-
ability it can be classified into twelve different temporal
classes with respect to the morphology of light-curves
for different observation IDs (OIDs) [1]. But, from this
temporal classification one is unable to understand about
a basic feature of non-linearity, whether this black hole
is a random or chaotic system, that is our present goal to
understand. Following an established technique of non-
linear dynamical physics applied earlier to other related
astrophysical problems [2, 3, 4], here we plan to establish
that the micro quasar GRS 1915+105 as well as the black
system is chaotic in nature. This analysis of temporal be-
havior of a system plays an important role in understand-
ing the geometry of the source, which thus eventually
will be used to test its relativistic nature and the corre-
sponding accretion process.

Before going into detail of our analysis, let us intro-
duce some basic definitions of various terminology used
in this article.

Chaos: If any two consecutive trajectories of a system,
while divergent from each other, are related by some
law, the system is called chaotic (eventhough in-
stantaneously it looks like random but overall it is
deterministic). Brownian motion is an immediate

practical example of it. In case of the accretion disk
physics, one can check this by investigating various
orbits around a compact object.

Random: If any two consecutive trajectories of a system
are not related by any physics, the system is called
random. Poisson noise is an example.

Degrees of Freedom: From the concept of classical me-
chanics, the Free Degrees of Freedom of an M di-
mensional system is M. If the number of constraints
into the system is n, the Net Degrees of Freedom
of the same system can be defined as, D � M � n.
Philosophically, the same thing is true even in the
case of non-linear dynamics, however, the estimated
D need not be integer (unlike any classical mechan-
ical system). In non-linear dynamics, D is the mea-
sure of chaos, called chaotic dimension of the sys-
tem. If there is no constraint into the system at any
dimension, M; D � M, both the degrees of free-
dom are the same, and therefore the system is ran-
dom. Naturally, for a constraintless random system,
D varies linearly with M, while for a chaotic system,
D saturates to a value above the particular M. For an
ideal chaotic system, D saturates when M

�
2, thus

sometimes denoted as D2.

The chaotic nature of accretion phenomena in
magneto-hydrodynamic simulations has been found by
Winters et al. [5] already. Therefore we are motivated to
check this chaotic nature from the observational point of
view, analyzing black hole data. If the fluctuations in an
accretion disk are random or stochastic, the correspond-
ing X-ray variations are expected, due to the variation
of external parameters, e.g. accretion rate, and/or there
is a possibility of random flares and vice versa. To



the contrary, the presence of chaotic nature, which is
deterministic, may be due to the inner disk instability
and/or coherent flares and vice versa.

To determine the chaotic nature of GRS 1915+105, in
the next section, we outline the methodology and in §3
discuss results for different OIDs. Finally in §4, we make
our conclusions.

2. METHOD

Once we have the light-curve data, let us denote the count
rate at the time t j be s � t j � . Let us also identify a delay,
τ , that indicates the time interval beyond which any two
count rates are not related. This is the time at which the
auto-correlation function of the system goes to zero or
reaches to its first minima (if it does not go to zero). If the
auto-correlation function neither goes to zero nor attains
a minimum, the mentioned delay time has to be figured
out in a different way explained in §3. Therefore, using
this delay one can construct a vector at time t j in an M
dimensional space as�
x j

� �
x � t j � ��� s � t j ��� s � t j � τ ��� s � t j � 2τ ���
	�	�	�	�	�	 up to Mth s  	

(1)
In this way all the possible M dimensional vectors have
to be constructed for j � 1 � 2 � 3 ��	�	�	�� N, and one can get
an N � M matrix equation. Then one has to map all
the vectors in an M dimensional phase-portrait, and to
compute the average number of data points within a
distance R from a particular data point1. For example,
in case of M � 2, one has to find out that mentioned
average number of points in the s � j � τ � � s � j � space.
This is called the correlation sum, defined as

CM � R � � lim
N � ∞

1
N � N � 1 �

N

∑
i

N

∑
j �� i

H � R ��� �xi �
�
x j � ��� (2)

where H � R ��� �xi �
�
x j � � is a Heaviside step function. Then

one has to find out CM � R � for different Rs. Finally, the
whole process has to repeat for the various choices of M
(say 1 � 15). Subsequently, the variation of log �CM � R ���
as a function of log � R � when M is a parameter, has to be
seen concentrating on the (approximate) linear region of
curves. Finally the average slope of approximate linear
region of the curve for different M to be computed as the
correlation dimension of the system, defined as

D2
� d � logCM � R ���

d � log � R ��� 	 (3)

Now from the variation of D2 as a function of M, one
can understand whether the system is chaotic or random

1 The average number of data points in an M-cube of arm length R or
M-sphere of radius R in the phase-portrait.

as mentioned in §1, and the chaotic dimension can be
identified from the saturated value of D2 in the curve.
The details of all these will be presented elsewhere [6].

An important point to be noted here that for a very
small R ( � Rmin), CM � R � would be of the order of unity
and the result would be Poisson noise dominated. On the
other hand, for a large R (

�
Rmax), CM � R � would satu-

rate to the total number of data points. Therefore for a
particular M, there is a range of R which gives the phys-
ical result where the CM � R � � R curve is linear. Also the
maximum M (largest M-cube/sphere) is chosen in such
a manner that it has to be within the embedding space
so that filled by points and there should not be any edge
effect due to the limitation of point’s number. Due to all
these mentioned reasons, if M is above of a particular
value Mc (M � Mc) there is a chance that Rmin

� Rmax,
and then no significant results can be obtained.

Now we like to apply all the above mentioned tech-
nique to the data of GRS 1915+105 to understand
whether it behaves as chaos or random. In the next sec-
tion, we discuss this.

3. RESULTS

We take the RXTE data of OIDs corresponding to each
of the temporal classes of GRS 1915+105. It is found
that different OIDs for a particular class give the same
results up to an error bar. Therefore, we choose one OID
for each temporal class to present our results, given in
Table 1. For each class we extract a few continuous data
streams � 3000 sec long. The time resolution of light-
curves is chosen as 0 	 1 sec, which gives � 30000 data
points for each of them with � 1000 counts per bin.
Light-curves for a finer time resolution are Poisson noise
dominated, while with a larger binning give a very little
number of data points for the present purpose. In our
cases, the auto-correlation function neither goes to zero
nor attains a minimum, therefore that τ is chosen in our
calculations above which the D2 � M curves saturate.
Here this saturated τ is typically � 20 � 50, and we
choose it as τ � 50 for all the cases.

In Fig. 1, we show results for seven temporal classes
of GRS 1915+105 data following the method outlined in
§2. According to the description of chaos, random, and
degrees of freedom in Introduction, the solid diagonal
line in each of the boxes in the figure indicates the ideal
random curve, D2

� M line, when there is no constraint
into the system. Figure 1 shows the results of β , κ , λ
and µ cases, which indicate a clear deviation of this
ideal random curve and depict a signature of chaos of
dimension � 3 	 3 � 4 	 5. To the contrary, the curve of χ
case perfectly overlaps with D2

� M line which indicates
an ideal random signature. Also the temporal classes γ



FIGURE 1. Results for GRS 1915+105 data in seven tem-
poral classes. The curves for κ , µ , β and λ classes indicate
chaotic signature, while that for χ shows random or stochas-
tic nature of the system. The cases for α and ρ indicate some
deviation from random signature.

and φ show a similar random signature. The cases of α
and ρ show a deviation of the ideal random, but that is
not as much as of chaos cases. Therefore we call this kind
of situation as semi-random (or semi-stochastic). Similar
semi-random behaviors come out from the analysis of θ ,
ν and δ temporal classes.

At this point, we could divide the results as well as
GRS 1915+105 system into three different classes or
stages: low-dimensional chaos (deterministic), random
or stochastic (indeterministic) and semi-random, as far
as the non-linear dynamical analysis is concern. How-
ever, we like to perform a test before making any strong
statement. We know that the Lorenz system is a model
of low dimensional chaos where the chaotic dimension,
D2

� 2 	 04. That means for the data of Lorenz system,
D2 � M curve starts to saturate when M � 2 with the sat-
uration D2 is 2 	 04. On the other hand the D2 � M curve
for the Poisson noise appears as a straight line of unit
gradient passing through the origin (i.e. D2

� M). Let
us take the Lorenz data set and introduce Poisson noise
into it in such a manner that the average count and rms
variation become the same as that of β case. Then using
this modified noise induced Lorenz data, if we perform
D2 � M analysis again, now the surprising fact comes out
that D2 no longer saturates to 2 	 04, instead becomes in-
creased to � 4. If a higher order rescaling (as mentioned
above) to Lorenz data is performed, such that the average
count and rms variation are same as that of γ case, the D2
becomes more and more increased, approached toward
the D2

� M line though not exactly overlapped on it. All
these scenarios have been pictorially represented in Fig.

FIGURE 2. The effect of Poisson noise to the Lorenz data.
The curve with circles indicates the result for actual Lorenz
data. The curves with squares and triangles come out when the
Lorenz data is rescaled by Poisson noise to β and γ like classes
(with the same average count and rms variation).

2. From these discussions, it is very clear that presence of
any kind of noise converts any low dimensional chaotic
system to that of high dimensional and/or random or
semi-random. It does not matter whether the system has
any chaotic signature or not, noise always suppresses it
and the system practically appears as higher dimensional
or random. Therefore the computed chaotic dimension
� 4 (comes out from Fig. 1) is an over estimation. If the
noise would have been possible to remove from the sys-
tem, those could appear as a low dimensional chaos like
Lorenz system. Similarly, the random and semi-random
appearance of, say, χ and α classes respectively, are only
due to the dominance of noise into the system. If the
system would have been noise free (or less noisy) those
classes could also have appeared as chaos or/and low di-
mensional chaos. This dominance of noise into the sys-
tem in the random cases will be more clear if we look
on to the Table 1, which clearly shows the Poisson noise
to rms ratio is higher for the random cases compared to
that for the cases of chaos. The table also lists the various
OIDs corresponding to the temporal classes, the average
count, rms variation, Poisson noise and finally what the
analysis tells about it, whether the system is chaos: C,
random/stochastic: S or semi-random/stochastic: SS.

4. CONCLUSIONS

We analyze the non-linear behavior of the micro quasar
GRS 1915+105 in terms of the signature of chaos and
random. It immediately comes out that at least four out of



TABLE 1. Columns:- 1. RXTE OID, 2. Temporal class of the system according to
[1], 3. Average count in the light-curve, � S � , 4. Root mean square variation in the
light-curve, rms, 5. Expected Poisson noise variation, � PN ���

�
� S � , 6. Ratio of

the expected Poisson noise to root mean square variation, 7. Stage of the system as
understood from D2 � M curves (C: chaotic; SS: semi-stochastic; S: stochastic)

OID Class � S � rms � PN � � PN � /rms Stage

10408-01-10-00 β 1917 1016 43.8 0.04 C
20402-01-37-01 λ 1493 1015 38.6 0.04 C
20402-01-33-00 κ 1311 800 36.2 0.04 C
10408-01-08-00 µ 3026 999 55 0.06 C

20402-01-45-02 θ 1740 678 41.7 0.06 SS
10408-01-40-00 ν 1360 462 36.9 0.08 SS
20402-01-03-00 ρ 1258 440 35.5 0.08 SS
20187-02-01-00 α 582 244 24.1 0.10 SS
10408-01-17-00 δ 1397 377 37.4 0.10 SS

20402-01-56-00 γ 1848 185 43.0 0.23 S
10408-01-22-00 χ 981 118 31.3 0.27 S
10408-01-12-00 φ 1073 118 32.7 0.28 S

its twelve temporal classes are chaotic in nature. There-
fore, there is no doubt that GRS 1915+105 behaves as
chaos at least in some stages. The three out of those re-
maining eight classes depict as random while five others
show a deviation from random, called as semi-random.
By a simple test, i.e. introducing noise into the low di-
mensional chaotic system, and from the ratio of Pois-
son noise to rms variation in the data of various classes,
it comes out that the random and semi-random cases
are noise dominated. Therefore, we can hypothesize that
GRS 1915+105 is chaotic in nature. This chaotic sig-
nature is suppressed only in some of its stages due to
the noise dominance and it appears like random or semi-
random, but actually it is not that.

Earlier, the results of Cyg X-1 data seemed to be
random or very high dimension chaos [2]. On the other
hand the temporal behavior of Cyg X-1 is very similar
to that of the χ class of GRS 1915+105, which is noise
dominated depicted as random according to our analysis.
Therefore, we understand that due to the dominance of
noise into the system, Cyg X-1 could not show its chaotic
nature, what it could be actually. In an alternative way,
we can say that there may be a stochastic component
to the variability which dominates for certain temporal
states.

Finally, we can conclude that any black hole system
may be chaotic in nature. Depending on the order of
noise present into the system, it appears either as ac-
tual chaos or random. Any random or semi-random na-
ture may not be its fundamental signature. If it would be
possible to remove the noise from the system, it would
always show an actual chaotic signature. Overall, the
identification of chaotic nature of black hole systems has

opened a new window to understand their temporal be-
havior deeply. In order to have a more concrete knowl-
edge and to upgrade the confidence level, the next step
should be to study the corresponding Lyapunov exponent
(which is another basic measure of a non-linear system
to distinguish the chaos from random) and the associated
Kolmogorov entropy.
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